久久亚洲av成人无码国产电影|日本最新一区二区三区免费看|特殊重囗味sm在线观看无码|久久不见久久见免费视频1′

芬蘭Kibron專注表面張力儀測(cè)量技術(shù),快速精準(zhǔn)測(cè)量動(dòng)靜態(tài)表面張力

熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟(jì)大學(xué)

同濟(jì)大學(xué)

聯(lián)合大學(xué).jpg

聯(lián)合大學(xué)

寶潔公司

美國(guó)保潔

強(qiáng)生=

美國(guó)強(qiáng)生

瑞士羅氏

瑞士羅氏

當(dāng)前位置首頁(yè) > 新聞中心

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

來(lái)源:上海謂載 瀏覽 2121 次 發(fā)布時(shí)間:2021-10-12


四、結(jié)論


油和/或 Corexit 的存在會(huì)導(dǎo)致 EPS 的蛋白質(zhì):多糖比率更高,并在中胚層實(shí)驗(yàn)中降低 SFT。 在這些實(shí)驗(yàn)中,SFT 與 蛋白質(zhì):具有負(fù)斜率的 EPS 多糖。 當(dāng)開闊的海洋 水域和兩種不同的沿海水處理進(jìn)行了比較, 蛋白質(zhì)趨勢(shì):多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對(duì)于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對(duì)照。 因此,SFT 與膠體 EPS 中的蛋白質(zhì):多糖比率成反比。


當(dāng)中宇宙水柱的不同尺寸分?jǐn)?shù)為 相比之下,我們發(fā)現(xiàn) EPS 膠體可以降低 SFT 蛋白質(zhì):多糖比例,表明有效的生物乳化 蛋白質(zhì)的容量。 粒子濾波中 SFT 的比較 分?jǐn)?shù) (< 0.45 μm) 和 EPS 膠體分?jǐn)?shù) (< 0.45 μm 和 > 3 kDa),對(duì)于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個(gè)包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級(jí)分顯示與以下相同的 SFT 純海水或只有真正溶解有機(jī)碳的海水。


顯微鏡技術(shù)(即 CLSM 和 SEM)證實(shí),正如預(yù)測(cè)的那樣,蛋白質(zhì)主要在空氣 - 水界面富集, 強(qiáng)烈影響空氣/水界面處的 SFT 治療。 這些技術(shù)還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過(guò)陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會(huì)發(fā)生微小的變化,與蛋白質(zhì):多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質(zhì)和酸性多糖的 EPS 模型成分比 Corexit 導(dǎo)致海水中膠束的自組裝甚至 當(dāng)這些成分的濃度很低時(shí)。 這個(gè) 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關(guān)于相互作用的更系統(tǒng)的研究 不同組件的不同組合,以及更多型號(hào) 單獨(dú)的化合物,可能需要更多地闡明在我們的中宇宙實(shí)驗(yàn)中觀察到的復(fù)雜性。


致謝


這項(xiàng)研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯(lián)盟研究的研究計(jì)劃 (微生物對(duì)分散劑和油的聚集和降解 Exopolymers) 聯(lián)盟。 原始數(shù)據(jù)可以在海灣找到 墨西哥研究倡議信息和數(shù)據(jù)合作組織 (GRIIDC) 在網(wǎng)址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質(zhì)外聚物中多糖的比例——摘要、簡(jiǎn)介

蛋白質(zhì)外聚物中多糖的比例——方法

蛋白質(zhì)外聚物中多糖的比例——結(jié)果與討論

蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!

天天综合网网欲色| 精品自拍偷拍一区二区| 狠狠cao2020高清视频| 国产婷婷一区二区三区| 国产成人精品自拍视频| 免费特级毛片| 国产精品igao视频网网址| 在线观看国产精品av| 无尺码精品产品视频| 国产av国片偷人妻麻豆| 亚洲精品卡2卡3卡4卡5卡区| 日韩内射美女片在线观看网站 | 老司机亚洲精品影院| 亚洲国产欧美在线看片一国产| 国产精品久久久久久久久软件| 久久婷婷国产综合精品| 日韩成人av午夜福利| 亚洲av永久纯肉无码精品动漫| 亚洲高清自偷揄拍自拍| 日日碰狠狠躁久久躁2023| 久久精品一区二区熟女| 亚洲三区在线观看无套内射| 亚洲欧洲专线一区| 久久久噜噜噜久久中文字幕色伊伊 | 久久伊人精品一区二区三区 | 亚洲精品国产suv一区| 无码国产一区二区三区四区| 好了av四色综合无码| 国产美女精品一区二区三区| 精品国产高清中文字幕| 邻居少妇张开双腿让我爽一夜| 日本aaaaa片爽快免费中国| 亚洲av片不卡无码一| 极品少妇被黑人白浆直流| 国产亚洲午夜高清国产拍精品| 中国国语毛片免费观看视频 | 国产偷抇久久精品a片69| 熟妇人妻无码中文字幕老熟妇| 精品人体无码一区二区三区| 日韩午夜理论免费tv影院| 久久久久人妻精品一区|